AWS Databases for Backend Engineers

 

🗄️ AWS Databases for Backend Engineers

RDS (PostgreSQL/MySQL) • DynamoDB • Aurora


🚀 Introduction

AWS offers multiple managed databases for different backend use cases — from transactional systems to high-throughput NoSQL workloads.

This guide covers the three most critical database services backend engineers must know:

ServiceTypeBest For
RDS (PostgreSQL/MySQL)RelationalTraditional applications, OLTP workloads
AuroraHigh-performance relationalScalable, fault-tolerant modern apps
DynamoDBNoSQL Key-Value / Document DBLow-latency, large-scale apps, IoT, serverless

This documentation includes real-world examples, architectures, and interview-grade insights.


🟦 1️⃣ Amazon RDS (PostgreSQL / MySQL)

Managed Relational Database | Automatic Backups | Multi-AZ


✅ What is RDS?

RDS is AWS’s managed relational database service supporting engines like:

  • PostgreSQL

  • MySQL

  • MariaDB

  • Oracle

  • SQL Server

AWS handles:
✅ Backups
✅ Patching
✅ Failover
✅ Monitoring
✅ Storage scaling


✅ Real-World Use Case – Backend API with PostgreSQL

API → Private Subnet → RDS PostgreSQL

Text Diagram

Internet │ ▼ ┌────────────────┐ │ ALB (Public) │ └────────────────┘ │ ▼ [ App Server / ECS / Lambda ] │ JDBC/PG Driver ▼ ┌────────────────┐ │ RDS PostgreSQL │ └────────────────┘

Common backend workloads:

  • User accounts

  • Transactions

  • Logging

  • Sessions

  • Product catalog


✅ Key Features

FeatureDescription
Multi-AZStandby replica for failover
Read ReplicasScale read traffic
Automated BackupsPoint-in-time recovery
Storage autoscalingAvoid storage exhaustion
Enhanced MonitoringOS-level insights

✅ Best Use Cases

  • Monolithic applications

  • Traditional transactional workloads

  • Apps requiring strong ACID consistency

  • Reporting and analytics using read replicas


🧠 Interview Tip

RDS = fully managed relational DB with multi-AZ failover and read replicas.


🟩 2️⃣ Amazon Aurora (MySQL/PostgreSQL Compatible)

Distributed Storage | High Performance | Serverless Options


✅ What is Aurora?

Aurora is AWS’s modern relational database, compatible with:

  • PostgreSQL

  • MySQL

Aurora provides:
✅ 5× performance of MySQL
✅ 3× performance of PostgreSQL
✅ 6-way replicated storage
✅ Automatic failover
✅ Autoscaling (Aurora Serverless v2)


✅ Real-World Use Case – Scalable E-Commerce Application

ALB → App → Aurora Cluster (Writer + Readers)

Text Diagram

┌─────────────────────┐ │ Aurora Cluster │ └───────┬────┬────────┘ │ │ ┌────────────┘ └────────────┐ ▼ ▼ [ Writer Node ] [ Read Replica ] (writes) (reads)

Aurora storage layer:

  • 6 copies across 3 AZs

  • Auto-healing

  • Auto-scaling


✅ Key Features

FeatureDescription
Serverless v2Auto-scaling compute
Multi-masterMulti-writer support (Aurora MySQL)
Fast failover< 30 seconds
Global DatabaseLow-latency cross-region reads
Backtrack"Undo" DB changes by minutes/hours

✅ Best Use Cases

  • High-traffic backend systems

  • SaaS platforms

  • Enterprise OLTP systems

  • Multi-region apps

  • Microservices needing relational consistency at scale


🧠 Interview Tip

Aurora = high-performance, distributed relational database with auto-scaling.


🟨 3️⃣ Amazon DynamoDB

NoSQL Key-Value & Document Store | Serverless | Low-latency


✅ What is DynamoDB?

DynamoDB is AWS's serverless NoSQL database offering:

  • ⚡ Ultra-low latency (single-digit ms)

  • Infinite horizontal scaling

  • Built-in HA across multiple AZs

  • Automatic partitioning

  • Pay-per-use (on-demand mode)

  • Fine-grained access control (IAM)


💡 Real-World Use Case – Metadata / IoT / High TPS Workloads

IoT Device → API → DynamoDB

Text Diagram

[ API Gateway ] │ ▼ [ Lambda Function ] │ ▼ [ DynamoDB Table ]

Use cases:

  • IoT telemetry

  • User sessions

  • Shopping carts

  • Feature flag storage

  • Configuration/state

  • Gaming leaderboards


✅ Key Features

FeatureDescription
On-demand modeAuto-scaling read/write capacity
Global TablesMulti-region, active-active replication
StreamsEvent handling for CDC
TTLAuto-expiration of data
Single-digit ms latencyHigh throughput

✅ DynamoDB vs RDS vs Aurora (Conceptual)

FeatureDynamoDBAuroraRDS
TypeNoSQLRelationalRelational
ScalingAutomaticAutomaticManual
ConsistencyEventually/StrongStrongStrong
SQL supportNoYesYes
TransactionsYesYesYes
Best forHigh TPSEnterprise scaleTraditional apps

🧠 Interview Tip

DynamoDB = NoSQL, auto-scaling, low-latency, high throughput.


🟥 4️⃣ High-Level Comparison: RDS vs Aurora vs DynamoDB

✅ Decision Table (Backend Engineer View)

FeatureRDSAuroraDynamoDB
Database ModelRelationalRelationalNoSQL
ScalingVertical + Read replicasHorizontal + ServerlessFully horizontal
PerformanceGoodExcellentExtreme
PricingInstance-basedHigher (cluster-based)Usage-based
AvailabilityMulti-AZ6 copies across 3 AZsMulti-AZ (default)
SchemaStrictStrictFlexible
Use CaseTraditional appsHigh-scale appsHigh-throughput apps

📘 5️⃣ Architecture Diagrams (ASCII)

✅ Multi-AZ RDS Architecture

[ App Servers ] │ ▼ [ RDS Primary ] → synchronous → [ Standby Replica ] │ ▼ Read Replica (async)

✅ Aurora Cluster Architecture

┌─────────────────────────────┐ │ Distributed Storage Layer │ │ (6 copies across 3 AZs) │ └───────────┬────────────┬────┘ │ │ ┌────────────┘ └────────────┐ ▼ ▼ [ Writer Node ] [ Reader Nodes ]

✅ DynamoDB Architecture

Client │ ▼ DynamoDB API │ ▼ Auto-Partitioned Storage Layer │ ▼ Multi-AZ Replication

🧠 6️⃣ Interview Questions & Answers

✅ RDS

Q: What is Multi-AZ?
A: Synchronous replication to a standby for automatic failover.

Q: How do read replicas work?
A: Asynchronous replication for read scaling only.


✅ Aurora

Q: Why is Aurora faster than RDS?
A: Distributed storage engine + high-performance cache + parallel writes.

Q: What is Aurora Serverless?
A: Auto-scaling compute capacity based on load.


✅ DynamoDB

Q: How does DynamoDB scale?
A: Automatic partitioning based on key access patterns.

Q: What is DynamoDB Streams?
A: Real-time change data capture (CDC).


✅ 7️⃣ Best Practices Summary

✅ RDS

  • Use Multi-AZ for production

  • Use parameter groups for tuning

  • Avoid storing files/blobs

  • Use read replicas for read-heavy workloads

✅ Aurora

  • Prefer Serverless for unpredictable workloads

  • Use performance insights

  • Use global database for cross-region reads

✅ DynamoDB

  • Use partition keys designed for distribution

  • Use TTL for expiring data

  • Enable auto-scaling

  • Use Streams for event-driven patterns


✅ Final Takeaways

ServiceChoose When
RDSYou need traditional SQL with stable workloads
AuroraYou need relational with high performance & auto-scaling
DynamoDBYou need massive scale, ultra-low latency, flexible schema

Backend engineers typically use all three in different architectures — the key is choosing the right database for the job.

No comments:

Post a Comment

Model Context Protocol (MCP) — Complete Guide for Backend Engineers

  Model Context Protocol (MCP) — Complete Guide for Backend Engineers Build Tools, Resources, and AI-Driven Services Using LangChain Moder...

Featured Posts