Core Backend Engineering Fundamentals

Core Backend Engineering Fundamentals

Languages & Frameworks

  • Primary Language: Go, Java, Python, or Node.js

  • Frameworks: Spring Boot (Java), FastAPI (Python), Gin (Go), Express (Node.js)

  • Testing: Unit, integration, and load testing (JUnit, pytest, Go test)

System Design

  • Scalability: Load balancers, caching, database sharding

  • High Availability & Fault Tolerance

  • API Design: REST, GraphQL, gRPC

  • Rate limiting, retries, and circuit breakers

  • Event-driven architectures (Kafka, SQS, SNS)

Databases

  • SQL: PostgreSQL, MySQL (indexes, joins, transactions)

  • NoSQL: DynamoDB, MongoDB, Redis

  • Data Modeling & Partitioning

Security

  • Authentication/Authorization (JWT, OAuth2)

  • Encryption (KMS, SSL/TLS)

  • Secrets management (AWS Secrets Manager, Parameter Store)


☁️ 2. AWS Cloud Infrastructure for Backend Engineers

Core AWS Services

AreaKey Services
ComputeEC2, ECS, EKS (Kubernetes), Lambda
StorageS3, EFS, FSx
DatabaseRDS (PostgreSQL/MySQL), DynamoDB, Aurora
NetworkingVPC, Subnets, Route53, ALB/NLB, Security Groups
MessagingSQS, SNS, EventBridge, Kinesis
MonitoringCloudWatch, X-Ray, CloudTrail
SecurityIAM (roles, policies), KMS, GuardDuty

DevOps/Deployment

  • CI/CD using CodePipeline, CodeBuild, CodeDeploy, or GitHub Actions

  • Infrastructure as Code: Terraform, CloudFormation, or CDK

  • Containerization: Docker + ECS/EKS

  • Auto Scaling Groups & Load Balancers

Serverless Patterns

  • API Gateway + Lambda + DynamoDB

  • Step Functions for orchestration

  • SQS/SNS for async processing


🧩 3. Observability, Performance & Reliability

  • Metrics & Logging: CloudWatch Metrics/Logs, OpenTelemetry, Prometheus/Grafana

  • Tracing: AWS X-Ray or Jaeger

  • Error Tracking: Sentry, Datadog

  • Performance Optimization: Caching (Redis, ElastiCache), async jobs, batch processing


🧠 4. Advanced Topics (for Senior Roles)

  • Multi-account strategy and cross-region deployments

  • Cost optimization (Spot instances, Savings Plans, S3 lifecycle policies)

  • Data pipelines (Kinesis → Lambda → S3/Snowflake)

  • API Gateway custom authorizers, WAF integration

  • Multi-tenant architecture and feature flags

  • Observability pipelines and OpenTelemetry

  • AI/ML integration (SageMaker, Bedrock, custom model endpoints)


📘 5. Hands-on Projects to Practice

  • Build a microservice (e.g., Order Service) using Go or Java + PostgreSQL

  • Deploy to EKS using Terraform

  • Add CI/CD with CodePipeline

  • Add SQS for async order processing

  • Integrate CloudWatch dashboards and X-Ray tracing

No comments:

Post a Comment

Model Context Protocol (MCP) — Complete Guide for Backend Engineers

  Model Context Protocol (MCP) — Complete Guide for Backend Engineers Build Tools, Resources, and AI-Driven Services Using LangChain Moder...

Featured Posts